Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
ACS Cent Sci ; 10(3): 658-665, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559285

RESUMO

The Tafel slope represents a critical kinetic parameter for mechanistic studies of electrochemical reactions, including the hydrogen evolution reaction (HER). Linear fitting of the polarization curve in a N2-saturated electrolyte is commonly used to determine Tafel slopes, which is, however, frequently plagued with inconsistencies. Our systematic studies reveal that the Tafel slopes derived from this approach are loading- and potential-dependent, and could substantially exceed the theoretical limits. Our analyses indicate that this discrepancy is largely attributed to the locally trapped HER-generated H2 in the catalyst layer. A non-negligible hydrogen oxidation reaction (HOR) current more prominently offsets the HER current at the smaller HER overpotential regime, resulting in an artificially smaller Tafel slope. On the other hand, at the higher overpotential where the HOR current becomes negligible, the locally trapped H2 substantially suppresses further HER current growth, leading to an artificially larger Tafel slope. The Butler-Volmer method accounts for both the HER and HOR currents in the fitting, which offers a more reliable method for pure Pt catalysts but is less applicable to transition-metal decorated Pt surfaces with distinct HER/HOR kinetics. Our studies underscore the challenges in Tafel slope analysis and the need for strict controls for reliable comparisons among different catalyst systems.

2.
Adv Mater ; : e2313209, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591644

RESUMO

Metal nanoparticle (NP) cocatalysts are widely investigated for their ability to enhance the performance of photocatalytic materials; however, their practical application is often limited by the inherent instability under light irradiation. This challenge has catalyzed interest in exploring high-entropy alloys (HEAs), which, with their increased entropy and lower Gibbs free energy, provide superior stability. In this study, 3.5 nm-sized noble-metal-free NPs composed of a FeCoNiCuMn HEA are successfully synthesized. With theoretic calculation and experiments, the electronic structure of HEA in augmenting the catalytic CO2 reduction has been uncovered, including the individual roles of each element and the collective synergistic effects. Then, their photocatalytic CO2 reduction capabilities are investigated when immobilized on TiO2. HEA NPs significantly enhance the CO2 photoreduction, achieving a 23-fold increase over pristine TiO2, with CO and CH4 production rates of 235.2 and 19.9 µmol g-1 h-1, respectively. Meanwhile, HEA NPs show excellent stability under simulated solar irradiation, as well high-energy X-ray irradiation. This research emphasizes the promising role of HEA NPs, composed of earth-abundant elements, in revolutionizing the field of photocatalysis.

3.
Cell Metab ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38569557

RESUMO

Activating Nrf2 by small molecules is a promising strategy to treat postmenopausal osteoporosis. However, there is currently no Nrf2 activator approved for treating chronic diseases, and the downstream mechanism underlying the regulation of Nrf2 on osteoclast differentiation remains unclear. Here, we found that bitopertin, a clinical-stage glycine uptake inhibitor, suppresses osteoclast differentiation and ameliorates ovariectomy-induced bone loss by activating Nrf2. Mechanistically, bitopertin interacts with the Keap1 Kelch domain and decreases Keap1-Nrf2 binding, leading to reduced Nrf2 ubiquitination and degradation. Bitopertin is associated with less adverse events than clinically approved Nrf2 activators in both mice and human subjects. Furthermore, Nrf2 transcriptionally activates ferroportin-coding gene Slc40a1 to reduce intracellular iron levels in osteoclasts. Loss of Nrf2 or iron supplementation upregulates ornithine-metabolizing enzyme Odc1, which decreases ornithine levels and thereby promotes osteoclast differentiation. Collectively, our findings identify a novel clinical-stage Nrf2 activator and propose a novel Nrf2-iron-ornithine metabolic axis in osteoclasts.

4.
J Orthop Surg Res ; 19(1): 245, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627743

RESUMO

PURPOSE: The objective of this study was to examine the predictive value of a newly developed MRI-based Endplate Bone Quality (EBQ) in relation to the development of cage subsidence following anterior cervical discectomy and fusion (ACDF). METHODS: Patients undergoing ACDF for degenerative cervical diseases between January 2017 and June 2022 were included. Correlation between EBQ scores and segmental height loss was analyzed using Pearson's correlation. ROC analyses were employed to ascertain the EBQ cut-off values that predict the occurrence of cage subsidence. Multivariate logistic regression analyses were conducted to identify the risk factors associated with postoperative cage subsidence. RESULTS: 23 individuals (14.56%) exhibited the cage subsidence after ACDF. In the nonsubsidence group, the average EBQ and lowest T-score were determined to be 4.13 ± 1.14 and - 0.84 ± 1.38 g/cm2 respectively. In contrast, the subsidence group exhibited a mean EBQ and lowest T-score of 5.38 ± 0.47 (p < 0.001) and - 1.62 ± 1.34 g/cm2 (p = 0.014), respectively. There was a significant positive correlation (r = 0.798**) between EBQ and the segmental height loss. The EBQ threshold of 4.70 yielded optimal sensitivity (73.9%) and specificity (93.3%) with AUC of 0.806. Furthermore, the lowest T-score (p = 0.045, OR 0.667) and an elevated cervical EBQ score (p < 0.001, OR 8.385) were identified as significant risk factors for cage subsidence after ACDF. CONCLUSIONS: The EBQ method presents itself as a promising and efficient tool for surgeons to assess patients at risk of cage subsidence and osteoporosis prior to cervical spine surgery, utilizing readily accessible patient data.


Assuntos
Vértebras Cervicais , Fusão Vertebral , Humanos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Estudos Retrospectivos , Imageamento por Ressonância Magnética , Pescoço/cirurgia , Discotomia/efeitos adversos , Discotomia/métodos , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Resultado do Tratamento
5.
Insects ; 15(3)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38535338

RESUMO

Trehalose is an important carbohydrate substance in insect hemolymph. Chitin is the main component of cuticle and peritrophic matrix in insects. Trehalase (Tre) catalyzes the decomposition of trehalose. Few studies of trehalase in lepidopteran insects have been conducted. Here, the functions of soluble Tre (Tre1) and membrane-bound Tre (Tre2) in the growth and development of Mythimna separata were investigated. We cloned and identified Tre1 and Tre2 cDNA sequences in M. separata. Analysis expression revealed that MsTre1 and MsTre2 were highly expressed in midgut and integument, respectively. The expression of MsTre1 and MsTre2 was highest in the pupal stage. We used RNA interference (RNAi) to inhibit Tre expression in M. separata larvae. Injection of dsMsTre1 or dsMsTre2 resulted in abnormal phenotypes and impeded normal molting. Silencing of MsTre1 and MsTre2 resulted in significant changes in the expression of genes in the trehalose and chitin metabolism pathways, significantly increased the trehalose and glycogen content, and significantly decreased MsTre1 and MsTre2 activity, the glucose content, and the chitin content in midgut and integument. Silencing of MsTre1 slowed larval molting, and the new cuticle was significantly thinner. These results indicate that RNAi of Tre may be useful for control strategies against M. separata.

6.
J Am Chem Soc ; 146(14): 9623-9630, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38533830

RESUMO

The fundamental understanding of sluggish hydrogen evolution reaction (HER) kinetics on a platinum (Pt) surface in alkaline media is a topic of considerable debate. Herein, we combine cyclic voltammetry (CV) and electrical transport spectroscopy (ETS) approaches to probe the Pt surface at different pH values and develop molecular-level insights into the pH-dependent HER kinetics in alkaline media. The change in HER Tafel slope from ∼110 mV/decade in pH 7-10 to ∼53 mV/decade in pH 11-13 suggests considerably enhanced kinetics at higher pH. The ETS studies reveal a similar pH-dependent switch in the ETS conductance signal at around pH 10, suggesting a notable change of surface adsorbates. Fixed-potential calculations and chemical bonding analysis suggest that this switch is attributed to a change in interfacial water orientation, shifting from primarily an O-down configuration below pH 10 to a H-down configuration above pH 10. This reorientation weakens the O-H bond in the interfacial water molecules and modifies the reaction pathway, leading to considerably accelerated HER kinetics at higher pH. Our integrated studies provide an unprecedented molecular-level understanding of the nontrivial pH-dependent HER kinetics in alkaline media.

7.
Angew Chem Int Ed Engl ; : e202402297, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488772

RESUMO

The artificial photosynthesis of H2O2 from water and oxygen using semiconductor photocatalysts is attracting increasing levels of attention owing to its green, environmentally friendly, and energy-saving characteristics. Although covalent organic frameworks (COFs) are promising materials for promoting photocatalytic H2O2 production owing to their structural and functional diversity, they typically suffer from low charge-generation and -transfer efficiencies as well as rapid charge recombination, which restricts their use as catalysts for photocatalytic H2O2 production. Herein, we report a strategy for anchoring vinyl moieties to a COF skeleton to facilitate charge separation and migration, thereby promoting photocatalytic H2O2 generation. This vinyl-group-bearing COF photocatalyst exhibits a H2O2-production rate of 84.5 µmol h-1 (per 10 mg), which is ten-times higher than that of the analog devoid of vinyl functionality and superior to most reported COF photocatalysts. Both experimental and theoretical studies provide deep insight into the origin of the improved photocatalytic performance. These findings are expected to facilitate the rational design and modification of organic semiconductors for use in photocatalytic applications.

8.
J Immunol Methods ; 528: 113653, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38430991

RESUMO

A fluorescent immunochromatographic test (FM-ICT) was developed for rapid detection of anti-Orientia tsutsugamushi antibodies in serum samples. The FM-ICT was constructed based on the dual-antigen sandwich method. Truncated 56 kDa outer membrane protein of O. tsutsugamushi strain SJ, was expressed in E. coli and mixed with those of Ptan and Gillam strains. A thin line of the protein mixture was precisely sprayed across a nitrocellulose membrane making this the "Test" line. Polyclonal antibodies (pAbs) to O.tsutsugamushi were sprayed in another line across the membrane making this the "Control" line. Fluorescent microspheres conjugated 56 kDa proteins reacting with sample serum will be captured on the "Test" line if the sample contains antibodies to O.tsutsugamushi. Several experimental parameters were optimized. After optimizing the reaction procedure, the results are visible, within 6 min, with the naked eye under ultraviolet light. The limit of detection (LOD) was determined to be 7.63 ng/mL with prepared polyclonal antibodies. No cross-reaction was observed with sera samples from other febrile diseases. In clinical evaluations, the strips showed 94.92% sensitivity (106/112) and 93.75% specificity (56/60). The FM-ICT we developed will provide a new tool for on-site diagnosis of scrub typhus.


Assuntos
Tifo por Ácaros , Humanos , Tifo por Ácaros/diagnóstico , Escherichia coli , Sensibilidade e Especificidade , Antígenos de Bactérias , Anticorpos Antibacterianos
9.
J Mol Cell Cardiol ; 189: 66-82, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432502

RESUMO

The regenerative capacity of the adult mammalian heart is limited, while the neonatal heart is an organ with regenerative and proliferative ability. Activating adult cardiomyocytes (CMs) to re-enter the cell cycle is an effective therapeutic method for ischemic heart disease such as myocardial infarction (MI) and heart failure. Here, we aimed to reveal the role and potential mechanisms of cellular nucleic acid binding protein (CNBP) in cardiac regeneration and repair after heart injury. CNBP is highly expressed within 7 days post-birth while decreases significantly with the loss of regenerative ability. In vitro, overexpression of CNBP promoted CM proliferation and survival, whereas knockdown of CNBP inhibited these processes. In vivo, knockdown of CNBP in CMs robustly hindered myocardial regeneration after apical resection in neonatal mice. In adult MI mice, CM-specific CNBP overexpression in the infarct border zone ameliorated myocardial injury in acute stage and facilitated CM proliferation and functional recovery in the long term. Quantitative proteomic analysis with TMT labeling showed that CNBP overexpression promoted the DNA replication, cell cycle progression, and cell division. Mechanically, CNBP overexpression increased the expression of ß-catenin and its downstream target genes CCND1 and c-myc; Furthermore, Luciferase reporter and Chromatin immunoprecipitation (ChIP) assays showed that CNBP could directly bind to the ß-catenin promoter and promote its transcription. CNBP also upregulated the expression of G1/S-related cell cycle genes CCNE1, CDK2, and CDK4. Collectively, our study reveals the positive role of CNBP in promoting cardiac repair after injury, providing a new therapeutic option for the treatment of MI.


Assuntos
Coração , Miócitos Cardíacos , Proteínas de Ligação a RNA , Animais , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Proliferação de Células , Mamíferos/metabolismo , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Ácidos Nucleicos/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Regeneração , Coração/fisiologia
10.
Indian J Orthop ; 58(3): 242-249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38425821

RESUMO

Introduction: We present a new surgical technique of Krackow suture combined with vertical Nice knot for the treatment of inferior patellar fractures and report the clinical results. Patients and Methods: Seventeen consecutive patients admitted with inferior patellar fractures over a 2-year period from June 2019 to February 2022 were prospectively enrolled. The AO classification was 34-A1. All patients underwent open reduction and fixation with Krackow sutures in combination with vertical Nice knot. Postoperative follow-up was performed for at least 1 year to evaluate knee function. Results: The mean age of seventeen patients was 53.2 ± 9.5 years (39-68 years), and all patients were followed up for more than 12 months. The operation time was 54.6 ± 7.7 min (42-68 min). No patients had nonunion, joint stiffness, and joint pain. All cases achieved bony union at an average of 9.9 ± 1.5 weeks (8-13 weeks) after surgery. At the last follow-up, there was no significant difference in range of motion between the injured knee (129.7 ± 3.3°, range 125-135°) and the unaffected knee (130.8 ± 3.8°, range 126-137°) (t = 0.28, P > 0.05). The mean Bostman score of the knee joint was 29.6 ± 0.7, including 15 excellent cases (88.2%) and two good case (11.8%). Conclusion: Krackow sutures combined with vertical Nice knots are stable and reliable in the treatment of inferior patellar fractures. Knee rehabilitation can be performed immediately after surgery and satisfactory knee function can be achieved. It is a safe, simple, and reliable alternative surgical method, and patients do not need to bear the secondary surgical injury of removing the internal fixation material. Therefore, it is suitable for the application of clinical promotion. Supplementary Information: The online version contains supplementary material available at 10.1007/s43465-023-01093-0.

11.
Nanomaterials (Basel) ; 14(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38392700

RESUMO

The traditional von Neumann architecture of computers, constrained by the inherent separation of processing and memory units, faces challenges, for instance, memory wall issue. Neuromorphic computing and in-memory computing offer promising paradigms to overcome the limitations of additional data movement and to enhance computational efficiency. In this work, transfer-free flexible memristors based on hexagonal boron nitride films were proposed for analog neuromorphic and digital memcomputing. Analog memristors were prepared; they exhibited synaptic behaviors, including paired-pulse facilitation and long-term potentiation/depression. The resistive switching mechanism of the analog memristors were investigated through transmission electron microscopy. Digital memristors were prepared by altering the electrode materials, and they exhibited reliable device performance, including a large on/off ratio (up to 106), reproducible switching endurance (>100 cycles), non-volatile characteristic (>60 min), and effective operating under bending conditions (>100 times).

12.
J Environ Sci (China) ; 140: 103-112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38331492

RESUMO

Highly crystalline carbon nitride polymers have shown great opportunities in overall water photosplitting; however, their mission in light-driven CO2 conversion remains to be explored. In this work, crystalline carbon nitride (CCN) nanosheets of poly triazine imide (PTI) embedded with melon domains are fabricated by KCl/LiCl-mediated polycondensation of dicyandiamide, the surface of which is subsequently deposited with ultrafine WO3 nanoparticles to construct the CCN/WO3 heterostructure with a S-scheme interface. Systematic characterizations have been conducted to reveal the compositions and structures of the S-scheme CCN/WO3 hybrid, featuring strengthened optical capture, enhanced CO2 adsorption and activation, attractive textural properties, as well as spatial separation and directed movement of light-triggered charge carriers. Under mild conditions, the CCN/WO3 catalyst with optimized composition displays a high photocatalytic activity for reducing CO2 to CO in a rate of 23.0 µmol/hr (i.e., 2300 µmol/(hr·g)), which is about 7-fold that of pristine CCN, along with a high CO selectivity of 90.6% against H2 formation. Moreover, it also manifests high stability and fine reusability for the CO2 conversion reaction. The CO2 adsorption and conversion processes on the catalyst are monitored by in-situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), identifying the crucial intermediates of CO2*-, COOH* and CO*, which integrated with the results of performance evaluation proposes the possible CO2 reduction mechanism.


Assuntos
Dióxido de Carbono , Nanopartículas , Nitrilas , Adsorção , Imidas
14.
BMC Musculoskelet Disord ; 25(1): 181, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413918

RESUMO

BACKGROUND: Previous studies have demonstrated the relationship between sagittal facet orientation and cervical degenerative spondylolisthesis. However, the associations between facet orientation and cervical spinal stenosis (CSS) have rarely been studied. METHODS: One hundred twenty patients with CSS (CSS group) and 120 healthy participants (control group) were consecutively enrolled. The cervical facet angles and anteroposterior diameter (A-P diameter) of spinal canal at each subaxial cervical levels were measured using axial magnetic resonance imaging. The intersection angle of the midsagittal line of the vertebra to the facet line represents the orientation of the facet joint. RESULTS: The facet angles on the right side at C2- C3 and C3-C4 in CSS group and at C2- C3 in control group had significantly higher values than those of the other sides. Besides, the facet angles and A-P diameter of spinal canal in CSS group were significantly smaller than those in control group at all levels (p < 0.05). CONCLUSIONS: Our study demonstrated that patients with CSS have smaller axial cervical facet joint angles compared to the healthy individuals. Further studies are needed to elicit the specific underlying mechanism between sagittalization of the cervical facet joints and the pathology of CSS.


Assuntos
Doenças da Medula Espinal , Estenose Espinal , Espondilolistese , Articulação Zigapofisária , Humanos , Estenose Espinal/diagnóstico por imagem , Estenose Espinal/patologia , Articulação Zigapofisária/diagnóstico por imagem , Articulação Zigapofisária/patologia , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/patologia , Pescoço , Imageamento por Ressonância Magnética/métodos , Doenças da Medula Espinal/patologia , Vértebras Lombares/patologia
15.
Environ Sci Technol ; 58(6): 3041-3053, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291736

RESUMO

Typically, SO2 unavoidably deactivates catalysts in most heterogeneous catalytic oxidations. However, for Pt-based catalysts, SO2 exhibits an extraordinary boosting effect in propane catalytic oxidation, but the promotive mechanism remains contentious. In this study, an in situ-formed tactful (Pt-S-O)-Ti structure was concluded to be a key factor for Pt/TiO2 catalysts with a substantial SO2 tolerance ability. The experiments and theoretical calculations confirm that the high degree of hybridization and orbital coupling between Pt 5d and S 3p orbitals enable more charge transfer from Pt to S species, thus forming the (Pt-S-O)-Ti structure with the oxygen atom dissociated from the chemisorbed O2 adsorbed on oxygen vacancies. The active oxygen atom in the (Pt-S-O)-Ti active structure is a robust site for C3H8 adsorption, leading to a better C3H8 combustion performance. This work can provide insights into the rational design of chemical bonds for high SO2 tolerance catalysts, thereby improving economic and environmental benefits.


Assuntos
Oxigênio , Titânio , Titânio/química , Oxirredução , Catálise , Adsorção
16.
Animals (Basel) ; 14(2)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38254372

RESUMO

The experiment aimed to investigate the effects of dietary lycopene on the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens. We randomly divided five hundred and seventy-six one-day-old male broilers into four groups each with six replicates and 24 chickens in each replicate. The control group (CG) was fed the basal diet, and the other groups were given powder lycopene of 10, 20, and 30 mg/kg lycopene (LP10, LP20, and LP30, respectively). Compared with the control group, (1) the dietary lycopene increased (p = 0.001) the average daily gain and decreased (p = 0.033) the feed conversion ratio in the experimental groups; (2) the glutathione peroxidase enzyme contents in LP20 were higher (p =< 0.001) in myocardium; (3) the crude protein contents were higher (p = 0.007) in the group treated with 30 mg/kg dietary lycopene; (4) the jejunum villous height was higher (p = 0.040) in LP20; (5) the Unclassified-f-Ruminococcaceae relative abundance was significantly higher (p = 0.043) in LP20. In this study, adding 20 mg/kg dietary lycopene to the broiler chickens' diets improved the growth performance, antioxidant capacity, meat quality, intestine histomorphology, and cecal microbiota in broiler chickens.

17.
Proc Natl Acad Sci U S A ; 121(5): e2315362121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261614

RESUMO

Carbon-based single-atom catalysts, a promising candidate in electrocatalysis, offer insights into electron-donating effects of metal center on adjacent atoms. Herein, we present a practical strategy to rationally design a model catalyst with a single zinc (Zn) atom coordinated with nitrogen and sulfur atoms in a multilevel carbon matrix. The Zn site exhibits an atomic interface configuration of ZnN4S1, where Zn's electron injection effect enables thermal-neutral hydrogen adsorption on neighboring atoms, pushing the activity boundaries of carbon electrocatalysts toward electrochemical hydrogen evolution to an unprecedented level. Experimental and theoretical analyses confirm the low-barrier Volmer-Tafel mechanism of proton reduction, while the multishell hollow structures facilitate the hydrogen evolution even at high current intensities. This work provides insights for understanding the actual active species during hydrogen evolution reaction and paves the way for designing high-performance electrocatalysts.

18.
Nano Lett ; 23(24): 11562-11568, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38054737

RESUMO

Developing artificial enzymes with excellent catalytic activities and uncovering the structural and chemical determinants remain a grand challenge. Discrete titanium-oxo clusters with well-defined coordination environments at the atomic level can mimic the pivotal catalytic center of natural enzymes and optimize the charge-transfer kinetics. Herein, we report the precise structural tailoring of a self-assembled tetrahedral Ti4Mn3-cluster for photocatalytic CO2 reduction and realize the selective evolution of CO over specific sites. Experiments and theoretical simulation demonstrate that the high catalytic performance of the Ti4Mn3-cluster should be related to the synergy between active Mn sites and the surrounding functional microenvironment. The reduced energy barrier of the CO2 photoreduction reaction and moderate adsorption strength of CO* are beneficial for the high selective evolution of CO. This work provides a molecular scale accurate structural model to give insight into artificial enzyme for CO2 photoreduction.

19.
Nat Commun ; 14(1): 8090, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38062015

RESUMO

The sensory neocortex has been suggested to be a substrate for long-term memory storage, yet which exact single cells could be specific candidates underlying such long-term memory storage remained neither known nor visible for over a century. Here, using a combination of day-by-day two-photon Ca2+ imaging and targeted single-cell loose-patch recording in an auditory associative learning paradigm with composite sounds in male mice, we reveal sparsely distributed neurons in layer 2/3 of auditory cortex emerged step-wise from quiescence into bursting mode, which then invariably expressed holistic information of the learned composite sounds, referred to as holistic bursting (HB) cells. Notably, it was not shuffled populations but the same sparse HB cells that embodied the behavioral relevance of the learned composite sounds, pinpointing HB cells as physiologically-defined single-cell candidates of an engram underlying long-term memory storage in auditory cortex.


Assuntos
Córtex Auditivo , Neocórtex , Masculino , Camundongos , Animais , Córtex Auditivo/fisiologia , Aprendizagem/fisiologia , Memória de Longo Prazo , Neocórtex/fisiologia , Neurônios/fisiologia , Percepção Auditiva/fisiologia
20.
J Am Chem Soc ; 145(50): 27415-27423, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38078702

RESUMO

Synchronized conversion of CO2 and H2O into hydrocarbons and oxygen via infrared-ignited photocatalysis remains a challenge. Herein, the hydroxyl-coordinated single-site Ru is anchored precisely on the metallic TiN surface by a NaBH4/NaOH reforming method to construct an infrared-responsive HO-Ru/TiN photocatalyst. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy (ac-HAADF-STEM) and X-ray absorption spectroscopy (XAS) confirm the atomic distribution of the Ru species. XAS and density functional theory (DFT) calculations unveil the formation of surface HO-RuN5-Ti Lewis pair sites, which achieves efficient CO2 polarization/activation via dual coordination with the C and O atoms of CO2 on HO-Ru/TiN. Also, implanting the Ru species on the TiN surface powerfully boosts the separation and transfer of photoinduced charges. Under infrared irradiation, the HO-Ru/TiN catalyst shows a superior CO2-to-CO transformation activity coupled with H2O oxidation to release O2, and the CO2 reduction rate can further be promoted by about 3-fold under simulated sunlight. With the key reaction intermediates determined by in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and predicted by DFT simulations, a possible photoredox mechanism of the CO2 reduction system is proposed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...